Penerapan Data Mining dengan Metode K-Nearest Neighbor untuk Memprediksi Penjualan Aksesoris Aquarium

Authors

  • Yudhistira Adhitya Universitas Pelita Harapan
  • Charles Chaywin Universitas Pelita Harapan

DOI:

https://doi.org/10.54259/satesi.v3i2.2239

Keywords:

Data Mining, K-Nearest Neighbor, Aquarium Accessories

Abstract

PT. Surya Jaya Aquarium is an industry engaged in the sale of various types of aquarium accessories, such as aquarium machines, filter media, aquarium lights. Currently, PT. Surya Jaya Aquarium often lacks certain items when ordering goods from customers. Meanwhile, there is often an excess of other goods at the same time due to a lack of orders from customers. For this reason, it is necessary to carry out the process of predicting product sales at the company, so that the process of controlling product orders can be carried out. To carry out the prediction process, the K-Nearest Neighbor algorithm can be applied. The purpose of this algorithm is to classify new objects using features and training data samples. The data used in this study is sales data for aquarium accessories products sourced from sales for the last 3 years from 2020, 2021 and 2022 originating from PT. Surya Jaya Aquarium. After that the data is selected and will be used to be processed in predicting sales of aquarium accessories for the next period. The K-Nearest Neighbor technique is used in this study to model data that has been prepared using the Knowledge Discovery in Databases (KDD) stage. From the results of the tests carried out, information was obtained that the error rate (error) from the sales prediction results was 6,196%

Downloads

Download data is not yet available.

References

M. Muttaqin et al., Pengantar Teknologi Digital. Yayasan Kita Menulis, 2023.

M. Muttaqin et al., Pengantar Internet. Yayasan Kita Menulis, 2023.

A. Maulana et al., Manajemen Bisnis Digital dan E- Commerce. Yayasan Kita Menulis, 2023.

A. Maulana et al., Pengantar Manajemen Basis Data dengan MySQL. Yayasan Kita Menulis, 2023.

E. Turban, R. Sharda, J. E. Aronson, and D. King, Business intelligence: A managerial approach. Pearson Prentice Hall Upper Saddle River, NJ, 2008.

S. Wahyuddin et al., Audit Sistem Informasi. Global Eksekutif Teknologi, 2023.

M. H. Siregar, “Data Mining Klasterisasi Penjualan Alat-Alat Bangunan Menggunakan Metode K-Means (Studi Kasus Di Toko Adi Bangunan),” Jurnal Teknologi Dan Open Source, vol. 1, no. 2, pp. 83–91, 2018.

G. Chairis and A. Maulana, “Analisis Perancangan dan Implementasi Sistem Informasi Stationary Berbasis Web pada PT. Indako Trading Coy,” Journal Information System Development (ISD), vol. 7, no. 2, pp. 78–90, 2022.

A. Syamil et al., Buku Ajar Manajemen Rantai Pasok. PT. Sonpedia Publishing Indonesia, 2023.

W. P. Widharta, “Penyusunan strategi dan sistem penjualan dalam rangka meningkatkan penjualan toko damai,” Jurnal Strategi Pemasaran, vol. 1, no. 2, pp. 1–15, 2013.

J. Han, M. Kamber, and J. Pei, “Data Mining: Concepts and Techniques Second Edition,” 2006. [Online]. Available: www.mkp.com

A. D. W. M. Sidik, I. H. Kusumah, A. Suryana, M. Artiyasa, A. P. Junfithrana, and others, “Gambaran Umum Metode Klasifikasi Data Mining,” FIDELITY: Jurnal Teknik Elektro, vol. 2, no. 2, pp. 34–38, 2020.

A. Jaelani, “Deteksi dan klasifikasi tipe bangunan pada Citra Satelit menggunakan Metode K Nearest Neighbor,” Universitas Islam Negeri Maulana Malik Ibrahim, 2020.

R. Takdirillah, “Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Penjualan Bisnis Ritel,” Edumatic: Jurnal Pendidikan Informatika, vol. 4, no. 1, pp. 37–46, 2020.

I. Rahmayuni, “Perbandingan performansi algoritma c4. 5 dan cart dalam klasifiksi data nilai mahasiswa prodi teknik komputer politeknik negeri padang,” Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, vol. 2, no. 1, pp. 40– 46, 2014.

A. M. Siregar, S. Kom, M. K. D. A. N. A. Puspabhuana, S. Kom, and M. Kom, Data Mining: Pengolahan Data Menjadi Informasi dengan RapidMiner. CV Kekata Group, 2017.

Downloads

Published

2023-10-28

How to Cite

Yudhistira Adhitya, & Charles Chaywin. (2023). Penerapan Data Mining dengan Metode K-Nearest Neighbor untuk Memprediksi Penjualan Aksesoris Aquarium. SATESI: Jurnal Sains Teknologi Dan Sistem Informasi, 3(2), 82–89. https://doi.org/10.54259/satesi.v3i2.2239