Penerapan Data Mining dengan Metode K-Nearest Neighbor untuk Memprediksi Penjualan Aksesoris Aquarium
DOI:
https://doi.org/10.54259/satesi.v3i2.2239Keywords:
Data Mining, K-Nearest Neighbor, Aquarium AccessoriesAbstract
PT. Surya Jaya Aquarium is an industry engaged in the sale of various types of aquarium accessories, such as aquarium machines, filter media, aquarium lights. Currently, PT. Surya Jaya Aquarium often lacks certain items when ordering goods from customers. Meanwhile, there is often an excess of other goods at the same time due to a lack of orders from customers. For this reason, it is necessary to carry out the process of predicting product sales at the company, so that the process of controlling product orders can be carried out. To carry out the prediction process, the K-Nearest Neighbor algorithm can be applied. The purpose of this algorithm is to classify new objects using features and training data samples. The data used in this study is sales data for aquarium accessories products sourced from sales for the last 3 years from 2020, 2021 and 2022 originating from PT. Surya Jaya Aquarium. After that the data is selected and will be used to be processed in predicting sales of aquarium accessories for the next period. The K-Nearest Neighbor technique is used in this study to model data that has been prepared using the Knowledge Discovery in Databases (KDD) stage. From the results of the tests carried out, information was obtained that the error rate (error) from the sales prediction results was 6,196%
Downloads
References
M. Muttaqin et al., Pengantar Teknologi Digital. Yayasan Kita Menulis, 2023.
M. Muttaqin et al., Pengantar Internet. Yayasan Kita Menulis, 2023.
A. Maulana et al., Manajemen Bisnis Digital dan E- Commerce. Yayasan Kita Menulis, 2023.
A. Maulana et al., Pengantar Manajemen Basis Data dengan MySQL. Yayasan Kita Menulis, 2023.
E. Turban, R. Sharda, J. E. Aronson, and D. King, Business intelligence: A managerial approach. Pearson Prentice Hall Upper Saddle River, NJ, 2008.
S. Wahyuddin et al., Audit Sistem Informasi. Global Eksekutif Teknologi, 2023.
M. H. Siregar, “Data Mining Klasterisasi Penjualan Alat-Alat Bangunan Menggunakan Metode K-Means (Studi Kasus Di Toko Adi Bangunan),” Jurnal Teknologi Dan Open Source, vol. 1, no. 2, pp. 83–91, 2018.
G. Chairis and A. Maulana, “Analisis Perancangan dan Implementasi Sistem Informasi Stationary Berbasis Web pada PT. Indako Trading Coy,” Journal Information System Development (ISD), vol. 7, no. 2, pp. 78–90, 2022.
A. Syamil et al., Buku Ajar Manajemen Rantai Pasok. PT. Sonpedia Publishing Indonesia, 2023.
W. P. Widharta, “Penyusunan strategi dan sistem penjualan dalam rangka meningkatkan penjualan toko damai,” Jurnal Strategi Pemasaran, vol. 1, no. 2, pp. 1–15, 2013.
J. Han, M. Kamber, and J. Pei, “Data Mining: Concepts and Techniques Second Edition,” 2006. [Online]. Available: www.mkp.com
A. D. W. M. Sidik, I. H. Kusumah, A. Suryana, M. Artiyasa, A. P. Junfithrana, and others, “Gambaran Umum Metode Klasifikasi Data Mining,” FIDELITY: Jurnal Teknik Elektro, vol. 2, no. 2, pp. 34–38, 2020.
A. Jaelani, “Deteksi dan klasifikasi tipe bangunan pada Citra Satelit menggunakan Metode K Nearest Neighbor,” Universitas Islam Negeri Maulana Malik Ibrahim, 2020.
R. Takdirillah, “Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Penjualan Bisnis Ritel,” Edumatic: Jurnal Pendidikan Informatika, vol. 4, no. 1, pp. 37–46, 2020.
I. Rahmayuni, “Perbandingan performansi algoritma c4. 5 dan cart dalam klasifiksi data nilai mahasiswa prodi teknik komputer politeknik negeri padang,” Jurnal Teknoif Teknik Informatika Institut Teknologi Padang, vol. 2, no. 1, pp. 40– 46, 2014.
A. M. Siregar, S. Kom, M. K. D. A. N. A. Puspabhuana, S. Kom, and M. Kom, Data Mining: Pengolahan Data Menjadi Informasi dengan RapidMiner. CV Kekata Group, 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Yudhistira Adhitya, Charles Chaywin
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).