Analsis Sentimen Churn Pelanggan dalam Layanan Streaming NETFLIX di X Menggunakan Metode IndoBERT

Authors

  • Farencia Levis Universitas Pelita Harapan
  • Cindy Chuwardi Universitas Pelita Harapan
  • Yoshe Wuvanka Universitas Pelita Harapan
  • Eveleen Huandra Universitas Pelita Harapan

DOI:

https://doi.org/10.54259/jdmis.v3i2.4281

Keywords:

Sentimen, Churn, IndoBERT, NETFLIX, Media Sosial, Text Mining

Abstract

This study aims to analyze customer sentiment toward Netflix’s streaming service as expressed on social media platform X (formerly Twitter), in order to identify potential churn. The research employs a combination of Text Mining and Sentiment Analysis methods, utilizing the IndoBERT-based Natural Language Processing (NLP) model. Data was collected using web scraping techniques with keywords indicating complaints or cancellation of Netflix subscriptions. The text data underwent preprocessing steps including case folding, cleaning, lemmatization, and tokenization. Sentiment classification results showed that most tweets expressed negative sentiment, suggesting a high risk of customer churn. Key factors driving negative sentiment include subscription pricing, login policy restrictions, and the cancellation of popular content. These findings can assist Netflix’s marketing and product development teams in creating data-driven retention strategies. Furthermore, the study demonstrates that the IndoBERT model is effective in classifying Indonesian-language social media opinions into positive, neutral, and negative sentiment categories.

Downloads

Download data is not yet available.

References

Y. Anjani, M. Wicaksana, and A. Kuswanti, “Penggunaan aplikasi streaming Netflix pada generasi Z,” Ikon--Jurnal Ilmiah Ilmu Komunikasi, vol. 28, no. 1, pp. 88–96, 2023.

P. S. Sitanggang, “Strategi pemasaran global terhadap Netflix,” ULIL ALBAB: Jurnal Ilmiah Multidisiplin, vol. 1, no. 9, pp. 3026–3035, 2022.

K. S. R. Palluvi, N. Syaada, and B. Intan, “Komparasi Metode Decision Tree dan K-Nearest Neighbor (KNN) dalam Memprediksi Costumer Churn Pada Perusahaan Telekomunikasi,” Bulletin of Information System Research, vol. 3, no. 1, pp. 39–45, 2024.

S. T. Sjukun and M. M. SM, Pemasaran Di Era Digital. CV. AZKA PUSTAKA, 2024.

P. Simanihuruk et al., MEMAHAMI PERILAKU KONSUMEN: Strategi Pemasaran yang Efektif pada Era Digital. PT. Sonpedia Publishing Indonesia, 2023.

S. E. Yoyo Sudaryo, M. MM, S. P. Nunung Ayu Sofiati Efi, S. E. Mohamad Arfiman Yosep, S. T. Budi Nurdiansyah, and M. H. SE, Digital Marketing dan fintech di Indonesia. Penerbit Andi, 2020.

R. S. Y. Zebua et al., BISNIS DIGITAL: Strategi Administrasi Bisnis Digital Untuk Menghadapi Masa Depan. PT. Sonpedia Publishing Indonesia, 2023.

D. Sebastian, H. D. Purnomo, and I. Sembiring, “Bert for natural language processing in bahasa Indonesia,” in 2022 2nd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA), IEEE, 2022, pp. 204–209.

R. Merdiansah, S. Siska, and A. A. Ridha, “Analisis sentimen pengguna X Indonesia terkait kendaraan listrik menggunakan IndoBERT,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), vol. 7, no. 1, pp. 221–228, 2024.

M. P. Firdaus and D. Trisnawarman, “Analisis Sentimen Publik terhadap Program Tabungan Perumahan Rakyat Menggunakan Model IndoBERT Lite pada Komentar YouTube: Public Sentiment Analysis of the Public Housing Savings Program Using the IndoBERT Lite Model on YouTube Comments,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 5, no. 1, pp. 359–368, 2025.

A. Onan, “Sentiment analysis on massive open online course evaluations: a text mining and deep learning approach,” Computer Applications in Engineering Education, vol. 29, no. 3, pp. 572–589, 2021.

F. Elfaladonna, I. G. T. Isa, D. Sartika, and A. M. Putra, Buku Ajar Dasar Exploratory Data Analysis (EDA). Penerbit NEM, 2024.

M. Kunilovskaya and A. Plum, “Text preprocessing and its implications in a digital humanities project,” in Proceedings of the Student Research Workshop Associated with RANLP 2021, 2021, pp. 85–93.

R. Pramana, J. J. Subroto, and A. A. S. Gunawan, “Systematic literature review of stemming and lemmatization performance for sentence similarity,” in 2022 IEEE 7th international conference on information technology and digital applications (ICITDA), IEEE, 2022, pp. 1–6.

S. U. Royan, N. Suarna, I. Ali, and D. Solihudin, “ANALISIS SENTIMEN ULASAN PRODUK SKINCARE DI SHOPEE UNTUK MENINGKATKAN KUALITAS PRODUK MENGGUNAKAN METODE SUPPORT VECTOR MACHINE,” Jurnal Informasi dan Komputer, vol. 13, no. 01, pp. 96–105, 2025.

Downloads

Published

2025-08-31

How to Cite

Levis, F., Chuwardi, C., Wuvanka, Y., & Huandra, E. (2025). Analsis Sentimen Churn Pelanggan dalam Layanan Streaming NETFLIX di X Menggunakan Metode IndoBERT. JDMIS: Journal of Data Mining and Information Systems, 3(2), 77–85. https://doi.org/10.54259/jdmis.v3i2.4281

Issue

Section

Articles