Analsis Sentimen Churn Pelanggan dalam Layanan Streaming NETFLIX di X Menggunakan Metode IndoBERT
DOI:
https://doi.org/10.54259/jdmis.v3i2.4281Keywords:
Sentimen, Churn, IndoBERT, NETFLIX, Media Sosial, Text MiningAbstract
This study aims to analyze customer sentiment toward Netflix’s streaming service as expressed on social media platform X (formerly Twitter), in order to identify potential churn. The research employs a combination of Text Mining and Sentiment Analysis methods, utilizing the IndoBERT-based Natural Language Processing (NLP) model. Data was collected using web scraping techniques with keywords indicating complaints or cancellation of Netflix subscriptions. The text data underwent preprocessing steps including case folding, cleaning, lemmatization, and tokenization. Sentiment classification results showed that most tweets expressed negative sentiment, suggesting a high risk of customer churn. Key factors driving negative sentiment include subscription pricing, login policy restrictions, and the cancellation of popular content. These findings can assist Netflix’s marketing and product development teams in creating data-driven retention strategies. Furthermore, the study demonstrates that the IndoBERT model is effective in classifying Indonesian-language social media opinions into positive, neutral, and negative sentiment categories.
Downloads
References
Y. Anjani, M. Wicaksana, and A. Kuswanti, “Penggunaan aplikasi streaming Netflix pada generasi Z,” Ikon--Jurnal Ilmiah Ilmu Komunikasi, vol. 28, no. 1, pp. 88–96, 2023.
P. S. Sitanggang, “Strategi pemasaran global terhadap Netflix,” ULIL ALBAB: Jurnal Ilmiah Multidisiplin, vol. 1, no. 9, pp. 3026–3035, 2022.
K. S. R. Palluvi, N. Syaada, and B. Intan, “Komparasi Metode Decision Tree dan K-Nearest Neighbor (KNN) dalam Memprediksi Costumer Churn Pada Perusahaan Telekomunikasi,” Bulletin of Information System Research, vol. 3, no. 1, pp. 39–45, 2024.
S. T. Sjukun and M. M. SM, Pemasaran Di Era Digital. CV. AZKA PUSTAKA, 2024.
P. Simanihuruk et al., MEMAHAMI PERILAKU KONSUMEN: Strategi Pemasaran yang Efektif pada Era Digital. PT. Sonpedia Publishing Indonesia, 2023.
S. E. Yoyo Sudaryo, M. MM, S. P. Nunung Ayu Sofiati Efi, S. E. Mohamad Arfiman Yosep, S. T. Budi Nurdiansyah, and M. H. SE, Digital Marketing dan fintech di Indonesia. Penerbit Andi, 2020.
R. S. Y. Zebua et al., BISNIS DIGITAL: Strategi Administrasi Bisnis Digital Untuk Menghadapi Masa Depan. PT. Sonpedia Publishing Indonesia, 2023.
D. Sebastian, H. D. Purnomo, and I. Sembiring, “Bert for natural language processing in bahasa Indonesia,” in 2022 2nd International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA), IEEE, 2022, pp. 204–209.
R. Merdiansah, S. Siska, and A. A. Ridha, “Analisis sentimen pengguna X Indonesia terkait kendaraan listrik menggunakan IndoBERT,” Jurnal Ilmu Komputer dan Sistem Informasi (JIKOMSI), vol. 7, no. 1, pp. 221–228, 2024.
M. P. Firdaus and D. Trisnawarman, “Analisis Sentimen Publik terhadap Program Tabungan Perumahan Rakyat Menggunakan Model IndoBERT Lite pada Komentar YouTube: Public Sentiment Analysis of the Public Housing Savings Program Using the IndoBERT Lite Model on YouTube Comments,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 5, no. 1, pp. 359–368, 2025.
A. Onan, “Sentiment analysis on massive open online course evaluations: a text mining and deep learning approach,” Computer Applications in Engineering Education, vol. 29, no. 3, pp. 572–589, 2021.
F. Elfaladonna, I. G. T. Isa, D. Sartika, and A. M. Putra, Buku Ajar Dasar Exploratory Data Analysis (EDA). Penerbit NEM, 2024.
M. Kunilovskaya and A. Plum, “Text preprocessing and its implications in a digital humanities project,” in Proceedings of the Student Research Workshop Associated with RANLP 2021, 2021, pp. 85–93.
R. Pramana, J. J. Subroto, and A. A. S. Gunawan, “Systematic literature review of stemming and lemmatization performance for sentence similarity,” in 2022 IEEE 7th international conference on information technology and digital applications (ICITDA), IEEE, 2022, pp. 1–6.
S. U. Royan, N. Suarna, I. Ali, and D. Solihudin, “ANALISIS SENTIMEN ULASAN PRODUK SKINCARE DI SHOPEE UNTUK MENINGKATKAN KUALITAS PRODUK MENGGUNAKAN METODE SUPPORT VECTOR MACHINE,” Jurnal Informasi dan Komputer, vol. 13, no. 01, pp. 96–105, 2025.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Farencia Levis, Cindy Chuwardi, Yoshe Wuvanka, Eveleen Huandra

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).























