Implementasi Market Basket Analysis Dengan Algoritma Frequent Pattern Growth Pada Data Transaksional di Electronic Commerce

Authors

  • Athaya Fairuzindah Universitas Bengkulu
  • Istiqomah Rabithah Alam Islami Universitas Bengkulu
  • Nafa Rexa Universitas Bengkulu
  • Silvia Anggraini Universitas Bengkulu
  • Etis Sunandi Universitas Bengkulu

DOI:

https://doi.org/10.54259/jdmis.v3i2.4593

Keywords:

Frequent Pattern Growth, data transaksional, e-commerce, data mining, rekomendasi produk

Abstract

The Growth of the e-commerce industry has resulted in a massive volume of transaction data, necessitating effective data analysis techniques to extract customer purchasing patterns. The Frequent Pattern Growth (FP-Growth) algorithm is one of the data mining methods that can be used to identify frequently occurring purchase patterns without explicitly generating candidate itemsets. This study aims to implement and evaluate the performance of the FP-Growth algorithm in analyzing e-commerce transaction data to identify recurring shopping patterns. The research methodology includes transaction data collection, data preprocessing, FP-Growth algorithm implementation, and result analysis. This study utilizes an e-commerce transaction dataset from an online retail store based in the United Kingdom, comprising 541,909 transaction records. The research findings indicate that the FP-Growth algorithm is efficient in identifying frequently occurring transaction patterns. Using a support threshold of 1% and a confidence level of 80%, 13 association rules were discovered, demonstrating relationships between frequently co-purchased products. Further analysis shows that these findings can be leveraged by e-commerce businesses to develop marketing strategies based on product recommendations. In conclusion, the FP-Growth algorithm is an effective approach for extracting purchasing patterns from large-scale e-commerce transaction data.

Downloads

Download data is not yet available.

References

Y. Rahmanto, A. Rifaini, S. Samsugi, dan S. D. Riskiono, "Sistem Monitoring pH Air Pada Aquaponik Menggunakan Mikrokontroler Arduino UNO," Jurnal Teknologi dan Sistem Tertanam, vol. 1, no. 1, pp. 23–28, 2020.

A. Surahman, B. Aditama, M. Bakri, dan R. Rasna, "Sistem Pakan Ayam Otomatis Berbasis Internet of Things," Jurnal Teknologi dan Sistem Tertanam, vol. 2, no. 1, pp. 13–20, 2021.

S. Samsugi, A. Nurkholis, B. Permatasari, A. Candra, dan A. B. Prasetyo, "Internet of Things Untuk Peningkatan Pengetahuan Teknologi Bagi Siswa," Journal of Technology and Social for Community Service (JTSCS), vol. 2, no. 2, p. 174, 2021.

C. Zai, "Implementasi Data Mining sebagai Pengolahan Data," Jurnal Portal Data, vol. 2, no. 3, 2022.

H. D. Wijaya dan S. Dwiasnati, "Implementasi Data Mining dengan Algoritma Naïve Bayes pada Penjualan Obat," Jurnal Informatika, vol. 7, no. 1, pp. 1–7, 2020.

F. M. Maghfiroh, S. A. Natalina, & R. Efendi, “Transformasi Ekonomi Digital : Connection Integration E-commerce dan S-Commerce dalam Upaya perkembangan ekonomi berkelanjutan,” Prosiding Seminar Nasional, vol 2, no 1, 2023, 1-10.

Carrie, E-commerce Data, kaggle, 12 Desember 2018, [Online]. Tersedia : https://www.kaggle.com/datasets/carrie1/ecommerce-data/code

A. Febiyanto, A. Faqih, R. Herdiyana, N. D. Nuris, & R. Narasati, “Penerapan algoritma FP-Growth untuk menentukan pola penjualan produk elektronik,” Jurnal mahasiswa teknik informatika, vol. 7, no 6, Desember 2023, 3907-3912.

A. Ardianto, D. Fitrianah, “Penerapan algoritma FP-Growth rekomendasi trens penjualan atk pada cv. Fajar sukses abadi, Jurnal telekomunikasi dan komputer,” vol. 9, no. 1, April 2019, 49-50.

A. S. Khadijah, A. F. Waluyo, “Implementasi Algoritma FP Growth Untuk Menganalisis Pola Pembelian Konsumen Balcos Compound,” Jurnal ilmiah teknik informatika dan sistem informasi, vol. 13, no. 3, Desember 2024: 2450-2463.

L. Holpiani, F. Putrawansyah, & S. Muntari, “Implementasi algoritma FP Growth untuk menganalisa pola penjualan kue pada toko dapur bunda,” Jurnal informatika & rekayasa elektronika, vol. 7, no. 1, April 2024,34-42.

M. Hafiz, T. Novita, D. Guswandi, H. Syahputra, & L. Mayola, “Implementasi data mining menggunakan algoritma FP Growth untuk menganalisa transaksi penmualan ekspor online,” Jurnal teknologi dan sistem informasi bisnis, vol. 5, no. 3, Juli 2023, 242-249.

A. H. Talia, N. Suarna, & D. Pratama, “Penerapan algoritma FP Growth dalam analisis pola transaksi untuk optimalitas pengelolahan data transaksi di toko lia,” Jurnal Kecerdasan Buatan dan Teknologi Informasi, vol. 3, no. 1, Januari 2024, 23-36.

A. H. Wibowo, K. A. Sekarjati, I. Mustofa, N. S. Makhulina, & R. Dewangga, “Penerapan Association Rule-Market Basket Analysis (AR-MBA) Dalam Menentukan Strategi Product Bundling: Studi Kasus Pada Minimarket AKPRIND MART,” Jurnal Teknik Industri Terintegrasi, vol. 7, no. 1, 2024, 379-386.

M. A. Saifudin, H. E. Wahanani, & A. Junaidi, “ Implementasi algoritma asosiasi FP Growth dan klasifikasi K Means terhadap pola pembelian konsumen di marketplace shopee,” Jurnal mahasiswa teknik informatika, vol. 8, no. 1, Februari 2024, 764-771.

J. A. Jenderal Yani No and S. Selatan, “Penerapan Algoritma FP-Growth Untuk Menentukan Pola Pengambilan Treatment,” Bulan Oktober, 2022.

E. Munanda and S. Monalisa, “Penerapan Algoritma Fp-Growth Pada Data Transaksi Penjualan Untuk Penentuan Tataletak Barang 1,” Jurnal Ilmiah Rekayasa dan Manajemen Sistem Informasi, vol. 7, no. 2, pp. 173–184, 2021.

M. Yudho Ardianto and S. Adinugroho, “Penentuan Tata Letak Produk menggunakan Algoritma FP-Growth pada Toko ATK,” 2021.

Nurasiah, “Implementasi Algoritma FP-Growth Pada Pengenalan Pola Penjualan. Jurnal Terapan Informasi Nusantara,” Jurnal terapan informatika nusantara, vol. 1, no. 9, Februari 2021 438-3444.

Downloads

Published

2025-08-31

How to Cite

Fairuzindah, A., Islami, I. R. A., Rexa, N., Anggraini, S., & Sunandi, E. (2025). Implementasi Market Basket Analysis Dengan Algoritma Frequent Pattern Growth Pada Data Transaksional di Electronic Commerce . JDMIS: Journal of Data Mining and Information Systems, 3(2), 101–107. https://doi.org/10.54259/jdmis.v3i2.4593

Issue

Section

Articles