Studi Kasus Asosiasi Pembelian Produk Teknologi pada Toko Elektronik dengan Metode Apriori

Authors

  • Muhammad Mushleh Universitas Islam Negeri Raden Fatah
  • Gusmelia Testiana Univesitas Islam Negeri Raden Fatah

DOI:

https://doi.org/10.54259/jdmis.v1i2.1718

Keywords:

Associations, , Technology Products, Electronic Stores, A Priori Methods, Purchase Patterns

Abstract

This study aims to analyze the purchase pattern of technology products in an electronic store using a priori method. A priori method is a data analysis technique used to identify associative relationships between various items in a dataset. In this study, data on purchase transactions of technology products from electronic stores becomes a database to be analyzed. The results of this analysis are expected to provide useful insights for electronic stores in developing marketing strategies and managing product stock. By knowing common buying patterns between technology products, e-stores can optimize product placement in stores, compile relevant promotional packages, and increase customer satisfaction. The research will involve several stages, including preprocessing of data to prepare datasets, implementation of a priori methods to identify patterns of association, and analysis of results to provide relevant interpretations. Through discussion and conclusion, this study will provide an overview of the implications of research results, recommendations for electronic stores, and limitations that may be encountered.

Downloads

Download data is not yet available.

References

Erlanie Sufarnap, Mirza Ilhami, and Jefri Junifer Pangaribuan, “Analisis dan Perancangan Sistem Informasi Penjualan pada Toko XYZ,” SATESI: Jurnal Sains Teknologi dan Sistem Informasi, vol. 2, no. 2, pp. 170–176, Oct. 2022, doi: 10.54259/satesi.v2i2.1181.

I. D. Ulumiyah and H. Yuliansyah, “Analisis Pola Asosiasi Judul Artikel Publikasi Berdasarkan Data Google Scholar Menggunakan Algoritma Apriori,” Jurnal Sarjana Teknik Informatika, vol. 10, no. 3, pp. 140–148, Oct. 2022, doi: 10.12928/jstie.v8i3.xxx.

Ristianingrum and Sulastri, “Implementasi Data Mining Menggunakan Algoritma Apriori,” Information Technology and Telematics, vol. 7, no. 2, pp. 372–382, Nov. 2017.

A. D. Hartanto, B. C. Lim, and D. Pradana, “Apriori Algorthm Implementation to Determine Product Sales Priority,” CCIT (Creative Communication and Innovative Technology) Journal, vol. 13, no. 1, pp. 1–9, Feb. 2020.

D. L. Rianti, Y. Umaidah, and A. Voutama, “Tren Marketplace Berdasarkan Klasifikasi Ulasan Pelanggan Menggunakan Perbandingan Kernel Support Vector Machine,” STRING (Satuan Tulisan Riset dan Inovasi Teknologi), vol. 6, no. 1, pp. 98–105, Aug. 2021.

A. Yang, W. Zhang, J. Wang, K. Yang, Y. Han, and L. Zhang, “Review on the Application of Machine Learning Algorithms in the Sequence Data Mining of DNA,” Front Bioeng Biotechnol, vol. 8, 2020, doi: 10.3389/fbioe.2020.01032.

O. Maimon and L. Rokach, “Introduction to Knowledge Discovery in Databases,” in Data Mining and Knowledge Discovery Handbook, O. Maimon and L. Rokach, Eds., Boston, MA: Springer US, 2005, pp. 1–17. doi: 10.1007/0-387-25465-X_1.

N. Hikmah, D. Ariyanti, and M. Sugesti, “Penerapan Teknik Data Mining untuk Clustering Armada pada PT. Siaga Transport Indonesia Menggunakan Metode k-Means,” EXPLORE, vol. 9, no. 1, pp. 7–12, Jan. 2019, doi: 10.35200/explore.v9i1.116.

Downloads

Published

2023-08-11

How to Cite

Mushleh, M., & Testiana, G. (2023). Studi Kasus Asosiasi Pembelian Produk Teknologi pada Toko Elektronik dengan Metode Apriori. JDMIS: Journal of Data Mining and Information Systems, 1(2), 78–82. https://doi.org/10.54259/jdmis.v1i2.1718

Issue

Section

Articles