Prediksi Data Produksi Menggunakan Regresi Linear Sederhana
DOI:
https://doi.org/10.54259/jdmis.v1i2.1956Keywords:
Simple Linear Regression, Production Data, Production Inventory Prediction, Automotive Raw Materials, Rapid MinerAbstract
PT. XYZ is a company engaged in the cold forging of automotive metal parts specialists. Companies must meet distribution needs and are required to make the right decisions in determining production strategies. To do this, companies need quite a lot of information sources to be analyzed further. Which, companies also face difficulties in obtaining strategic information such as sales levels per period or best-selling products. The analytical method uses simple linear regression in the prediction system because simple linear regression analysis can predict time series. The results of the analysis on the Collar 17x10.5x11 product were obtained from predictions from January to December 2020 with an error rate of 3.78%. The Nut AM M12x14x12 product obtained prediction results from January to December 2020 with a rate of 12.53%. The Collst product 23.6x16.3x3 obtained prediction results from January to December 2020 with a rate of 5.43%. For Nipple products from January to December 2020 with a rate of 12.14%
Downloads
References
N. K. Afkarina, A. W. Widodo, and M. T. Furqon, “Implementasi Regresi Linier Berganda Untuk Prediksi Jumlah Peminat Mata Kuliah Pilihan,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 11, pp. 10462–10467, Nov. 2019.
N. Iksan, Y. P. Putra, and E. D. Udayanti, “Regresi Linier Untuk Prediksi Permintaan Sparepart Sepeda Motor,” ITEJ (Information Technology Engineering Journals), vol. 3, no. 2, Dec. 2018, doi: 10.24235/itej.v3i2.26.
T. Indarwati, T. Irawati, and E. Rimawati, “Penggunaan Metode Linear Regression untuk Prediksi Penjualan Smartphone,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 6, no. 2, Oct. 2018, doi: 10.30646/tikomsin.v6i2.369.
A. Alfandianto, C. E. Suharyanto, and F. N. D. Prasasti, “Analisis Regresi Linier Guna Mengetahui Pengaruh Tingkat Kematian Kecelakaan Lalu Lintas Terhadap Faktor Mabuk,” SAINTEK : Jurnal Ilmiah Sains dan Teknologi Industri, vol. 5, no. 1, pp. 47–51, Jul. 2021, doi: 10.32524/saintek.v5i1.246.
W. M. Baihaqi, M. Dianingrum, and K. A. N. Ramadhan, “Regresi Linier Sederhana untuk Memprediksi Kunjungan Pasien di Rumah Sakit Berdasarkan Jenis Layanan dan Umur Pasien,” Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, vol. 5, no. 2, pp. 86–93, Dec. 2019, doi: 10.24014/coreit.v5i2.7067.
F. Septa, A. Yudhana, and A. Fadlil, “Analisis Perbandingan Metode Regresi Linier Dan Importance Performance Analysis (IPA) Terhadap Kepuasan Pengguna Pada Layanan E-Government Menggunakan Metode WebQual Modifikasi,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 7, no. 5, pp. 951–960, Oct. 2020, doi: 10.25126/jtiik.202072294.
A. R. Hakim, “Analisis Faktor-Faktor yang Mempengaruhi Pertumbuhan Ekonomi di Provinsi Banten Menggunakan Regresi Linier dan Geographically Weighted Regression,” Jurnal Statistika, vol. 8, no. 1, pp. 68–77, 2020, doi: 10.26714/jsunimus.8.1.2020.%25p.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Segar Napitupulu, Novriadi Antonius Siagian

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).