Prediksi Data Produksi Menggunakan Regresi Linear Sederhana

Authors

  • Segar Napitupulu Universitas Mikroskil
  • Novriadi Antonius Siagian Universitas Mikroskil

DOI:

https://doi.org/10.54259/jdmis.v1i2.1956

Keywords:

Simple Linear Regression, Production Data, Production Inventory Prediction, Automotive Raw Materials, Rapid Miner

Abstract

PT. XYZ is a company engaged in the cold forging of automotive metal parts specialists. Companies must meet distribution needs and are required to make the right decisions in determining production strategies. To do this, companies need quite a lot of information sources to be analyzed further. Which, companies also face difficulties in obtaining strategic information such as sales levels per period or best-selling products. The analytical method uses simple linear regression in the prediction system because simple linear regression analysis can predict time series. The results of the analysis on the Collar 17x10.5x11 product were obtained from predictions from January to December 2020 with an error rate of 3.78%. The Nut AM M12x14x12 product obtained prediction results from January to December 2020 with a rate of 12.53%. The Collst product 23.6x16.3x3 obtained prediction results from January to December 2020 with a rate of 5.43%. For Nipple products from January to December 2020 with a rate of 12.14%

Downloads

Download data is not yet available.

References

N. K. Afkarina, A. W. Widodo, and M. T. Furqon, “Implementasi Regresi Linier Berganda Untuk Prediksi Jumlah Peminat Mata Kuliah Pilihan,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 11, pp. 10462–10467, Nov. 2019.

N. Iksan, Y. P. Putra, and E. D. Udayanti, “Regresi Linier Untuk Prediksi Permintaan Sparepart Sepeda Motor,” ITEJ (Information Technology Engineering Journals), vol. 3, no. 2, Dec. 2018, doi: 10.24235/itej.v3i2.26.

T. Indarwati, T. Irawati, and E. Rimawati, “Penggunaan Metode Linear Regression untuk Prediksi Penjualan Smartphone,” Jurnal Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 6, no. 2, Oct. 2018, doi: 10.30646/tikomsin.v6i2.369.

A. Alfandianto, C. E. Suharyanto, and F. N. D. Prasasti, “Analisis Regresi Linier Guna Mengetahui Pengaruh Tingkat Kematian Kecelakaan Lalu Lintas Terhadap Faktor Mabuk,” SAINTEK : Jurnal Ilmiah Sains dan Teknologi Industri, vol. 5, no. 1, pp. 47–51, Jul. 2021, doi: 10.32524/saintek.v5i1.246.

W. M. Baihaqi, M. Dianingrum, and K. A. N. Ramadhan, “Regresi Linier Sederhana untuk Memprediksi Kunjungan Pasien di Rumah Sakit Berdasarkan Jenis Layanan dan Umur Pasien,” Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, vol. 5, no. 2, pp. 86–93, Dec. 2019, doi: 10.24014/coreit.v5i2.7067.

F. Septa, A. Yudhana, and A. Fadlil, “Analisis Perbandingan Metode Regresi Linier Dan Importance Performance Analysis (IPA) Terhadap Kepuasan Pengguna Pada Layanan E-Government Menggunakan Metode WebQual Modifikasi,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 7, no. 5, pp. 951–960, Oct. 2020, doi: 10.25126/jtiik.202072294.

A. R. Hakim, “Analisis Faktor-Faktor yang Mempengaruhi Pertumbuhan Ekonomi di Provinsi Banten Menggunakan Regresi Linier dan Geographically Weighted Regression,” Jurnal Statistika, vol. 8, no. 1, pp. 68–77, 2020, doi: 10.26714/jsunimus.8.1.2020.%25p.

Downloads

Published

2023-08-11

How to Cite

Napitupulu, S., & Siagian, N. A. (2023). Prediksi Data Produksi Menggunakan Regresi Linear Sederhana. JDMIS: Journal of Data Mining and Information Systems, 1(2), 95–105. https://doi.org/10.54259/jdmis.v1i2.1956

Issue

Section

Articles