Analisis Sentimen Opini Publik terhadap Fenomena Bunuh Diri Mahasiswa di Twitter Menggunakan Algoritma Naive Bayes
DOI:
https://doi.org/10.54259/satesi.v4i1.2908Keywords:
Sentimen Analysis, Text Mining, Naive Bayes, Rapidminer, Student Suicide, TwitterAbstract
Currently, Twitter or X social media has become a popular social media for interacting and providing opinions on trending events. The opinion that is still widely discussed is the phenomenon of student suicide. With the many opinions on Twitter social media about the phenomenon of student suicide, this creates a dilemma about the phenomenon of student suicide, whether student suicide is a positive or negative behavior. For this reason, sentiment analysis was carried out to group opinions on Twitter social media. In analyzing this sentiment, the Naive Bayes algorithm is used, which is a data mining algorithm that has the advantage of being easy in the calculation stage. The rapidminer application is used to analyze opinions on Twitter social media. The results obtained by the Naive Bayes algorithm provide an accuracy of 60%. Sentiment analysis shows that there are 41% of opinions that have positive sentiment values and there are 59% of opinions that have negative sentiment values. So the majority of opinions about student suicide on Twitter social media have negative sentiment values. In collecting opinion data, it also shows that the words news people and semarang are words that are often written on Twitter social media.
Downloads
References
I. T. Mukaromah, “Problem dan Ide Bunuh Diri Pada Mahasiswa,” Universitas Muhammadiyah Surakarta, 2020. [Online]. Available: http://journal.um-surabaya.ac.id/index.php/JKM/article/view/2203%0Ahttp://mpoc.org.my/malaysian-palm-oil-industry/
S. Fransiska and Yolanda, “Analisis sentimen twitter untuk review film menggunakan algoritma naive bayes classifier (nbc) pada sentimen r programming,” J. Siliwangi, vol. 5, no. 2, pp. 68–71, 2019.
H. F. Putro, R. T. Vulandari, and W. L. Y. Saptomo, “Penerapan Metode Naive Bayes Untuk Klasifikasi Pelanggan,” J. Teknol. Inf. dan Komun., vol. 8, no. 2, 2020, doi: 10.30646/tikomsin.v8i2.500.
S. K. Wardani and Y. A. Sari, “Analisis Sentimen menggunakan Metode Naïve Bayes Classifier terhadap Review Produk Perawatan Kulit Wajah menggunakan Seleksi Fitur N-gram dan Document Frequency Thresholding,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 5, no. 12, pp. 5582–5590, 2021.
I. Farida and S. W. H. L. Hendric, “Prediksi Pola Kelulusan Mahasiswa Menggunakan Teknik Data Mining Classification Emerging Pattern,” Petir, vol. 12, no. 1, pp. 1–17, 2019, doi: 10.33322/petir.v12i1.414.
T. T. Widowati and M. Sadikin, “Analisis Sentimen Twitter terhadap Tokoh Publik dengan Algoritma Naive Bayes dan Support Vector Machine,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 2, pp. 626–636, 2021, doi: 10.24176/simet.v11i2.4568.
S. Alfaris and Kusnawi, “Komparasi Metode KNN dan Naive Bayes Terhadap Analisis Sentimen Pengguna Aplikasi Shopee,” Indones. J. Comput. Sci., vol. 12, no. 5, pp. 2766–2776, 2023, doi: 10.33022/ijcs.v12i5.3304.
P. R. Saputra Andri , Subing Mulia, “Perbandingan Metode Naïve Bayes Classifier Dan Support Vector Machine Untuk Analisis Sentimen Pengguna Twitter Mengenai Piala Dunia Fifa 2022,” Teknomatika, vol. 13, no. 01, pp. 22–31, 2023, [Online]. Available: http://ojs.palcomtech.ac.id/index.php/teknomatika/article/view/616
F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” J. SIMETRIS, vol. 10, no. 2, pp. 681–686, 2019.
R. Apriani and D. Gustian, “Analisis Sentimen dengan Naïve Bayes Terhadap Komentar Aplikasi Tokopedia,” J. Rekayasa Teknol. Nusa Putra, vol. 6, no. 1, pp. 54–62, 2019, [Online]. Available: https://rekayasa.nusaputra.ac.id/article/view/86
R. N. Fahmi, N. Nursyifa, and A. Primajaya, “Analisis Sentimen Pengguna Twitter Terhadap Kasus Penembakan Laskar Fpi Oleh Polri Dengan Metode Naive Bayes Classifier,” JIKO (Jurnal Inform. dan Komputer), vol. 5, no. 2, pp. 61–66, 2021, [Online]. Available: https://ejournal.akakom.ac.id/index.php/jiko/article/view/437/0
M. Masril and F. W. Lubis, “Analisis Penggunaan Media Sosial dan Penyebaran Hoax Di Kota Medan,” J. SIMBOLIKA Res. Learn. Commun. Study, vol. 6, no. 1, pp. 11–22, 2020, doi: 10.31289/simbollika.v6i1.2937.
H. H. Kusumawardani, I. Rosyadi, F. A. Artanto, F. I. Arzha, and N. A. Rachmayani, “Analisis Decision Tree dalam Pengaruh Digital Marketing terhadap Penerimaan Siswa Baru,” Remik, vol. 6, no. April, pp. 225–231, 2022.
A. Setiadi, “Pemanfaatan media sosial untuk efektifitas komunikasi,” J. Ilm. Matrik, vol. 16, no. 1, 2014.
A. Fatkhudin, F. A. Artanto, N. A. Safli, and D. Wibowo, “Decision Tree Berbasis SMOTE dalam Analisis Sentimen Penggunaan Artificial Intelligence untuk Skripsi,” Remik Ris. dan E-Jurnal Manaj. Inform. Komput., vol. 8, no. April, pp. 494–505, 2024.
F. A. Artanto, “Support Vector Machine Berbasis Particle Swarm Optimization Pada Analisis Sentimen Anggota KPPS,” J. FASILKOM (teknologi Inf. dan ILmu KOMputer), vol. 14, no. 1, pp. 75–79, 2024, doi: https://doi.org/10.37859/jf.v14i1.6795.
A. Wahyuningtyas, I. S. Sitanggang, and H. Khotimah, “Deteksi Spam pada Twitter Menggunakan Algoritme Naïve Bayes,” J. Ilmu Komput. dan Agri-Informatika, vol. 7, no. 1, pp. 31–40, 2020, doi: 10.29244/jika.7.1.31-40.
A. Fatkhudin, A. Khambali, F. A. Artanto, and N. A. P. Zade, “Implementasi Algoritma Clustering K-Means Dalam Pengelompokan Mahasiswa Studi Kasus (Prodi Manajemen Informatika),” J. Minfo Polgan, vol. 12, no. 2, pp. 777–783, 2023, doi: 10.33395/jmp.v12i2.12494.
I. Rosyadi, F. A. Artanto, S. E. Rahmawati, H. Tri, and B. Joyo, “Decision Tree Dalam Analisis Keputusan Pembelian Program Pada Perkumpulan Penggiat Programmer Indonesia,” J. Fasilkom, vol. XII, no. III, pp. 141–144, 2022.
M. F. I. Haq, I. Rosyadi, M. Nasir, and A. Khambali, “Sentiment Analisis Ulasan Aplikasi Livin Pada Google Play Store,” J. Surya Inform., vol. 14, no. 1, pp. 24–29, 2024.
H. Annur, “Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes,” Ilk. J. Ilm., vol. 10, no. 2, pp. 160–165, 2018, doi: 10.33096/ilkom.v10i2.303.160-165.
S. Hadianti and F. Yosep Tember, “Analisis Sentiment Covid-19 Di Twitter Menggunakan Metode Naive Bayes Dan SVM,” J. Teknol. Inf., vol. 6, no. 1, pp. 58–63, 2022, [Online]. Available: www.Kaggle.com.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Fenilinas Adi Artanto
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).